Techniques for optically observing single molecules are extending and even changing our understanding of molecular processes in biology. Often, it is desirable to follow the dynamics of a single molecule for several seconds or longer. Methods have been developed to immobilize and isolate or confine single molecule in order to study their dynamics on such long time scales. One such approach is to confine the molecule of interest in a microscopic water droplet immersed in an immiscible background fluid, and then trap the water droplet using optical tweezers. For a sufficiently small water droplet, the molecule of interest will remain within the detection volume of a confocal microscope allowing continuous measurement of the molecule’s behaviour. This approach has advantages over other approaches for immobilizing single molecules, such as surface attachment – the molecule is free to diffuse within the water droplet away from an uncharacterized surface. The goal of this project will be to develop an apparatus capable of trapping and manipulating microscopic water droplets containing single molecules and studying the behaviour of the single molecules. In addition to the development of the necessary optical technologies for such studies, microfluidic-based approaches will be investigated for generating single, microscopic water droplets on demand.
Supervisor: Prof. Kris Helmerson
See https://www.monash.edu/science/schools/physics/honours/honours-project to apply.