The end is in sight for traditional integrated electronics ...

Dissipation from electron motion in conventional semiconductors generates heat, which becomes increasingly problematic at small device dimensions. Meanwhile, with the rise of the cloud paradigm, ~ 8% of domestic power usage is now consumed by computers. The race is on to find a viable solution to both of these issues.

ARC CENTRE OF EXCELLENCE IN FUTURE LOW-ENERGY ELECTRONICS TECHNOLOGIES

Dr. David Cortie

Robust

quantum transport

Computer-assisted design of new materials

Criteria for the ideal semi-metal

Scalable: space, speed and economy

Low dissipation charge-transport

Dirac dispersion with an adjustable band-gap

Chemically-stable under ambient conditions

Density functional theory Ab initio molecular dynamics

Low Joule heating

Magnetically-ordered

Environmentally-friendly

Two dimensional and three dimensional Dirac materials

2D

Graphene Silicene Germanene Stanene Na₃Bi

Materials

The Advantages of Dirac

of the linear (Dirac) dispersion.

- Rapid low-loss transport is a feature

Ballistic rather than diffusive electron

motion minimises Joule heating.

- Large magnetoresistance

mobility 2d electron layer.

- External stimuli or gating

on the electronic conductivity

near a Quantum Critical Point.

- For topologically-protected states,

chemical defects have minimal effects

can have a strong effect

on the surface conductivity.

- For 1D edge states of ultra-thin

materials, transport can occur with

zero disappation via Quantum Hall Effects.

is a common feature in the high

Materials synthesis

Single Crystal Growth

Pulse Laser Deposition

OF WOLLONGONG

Nuclear toolkit for material science

Role of the UoW Node (2017-2021)

UOW and ANSTO members

Prof. Frank Klose

Prof. Xiaolin Wang Dr. Zhi Li

The UoW node is involved in the broad theme of Dirac Semimetals as an enabling technology. Our team, led by Prof. Xiaolin Wang, will design and synthesise new materials in this family to realize charge and spin quantum effects. Candidates include magnetic topological insulators, Weyl semi-metals and spin-gapless semiconductors.

Diffraction

Australian Synchrotron

Ion beam modification

Atomic-scale characterisation

Scanning Tunneling Microscopy

-If robust magnetic order can be realized, zero-loss transport may be achievable in ambient on-chip conditions via the Quantum Anomalous Hall Effect.

Some of our earlier related work

- [1] Wang, Physical Review Letters, 2008, 100, 156404 (2008)
- [2] Cortie, Klose, Wang, Appl. Phys Lett, 101, 172404 (2012)
- [3] Cortie, Klose, Wang, Physical Review B 86 (5), 054408
- [4] Zhi, Wang, ACS. Cent. Sci., 2, 517. (2016)
- [5] Cortie, Wang, Phys. Rev Lett. 116, 106103(2016)
- [6] Cortie, Wang, Klose, ACS Appl. Mat. Inter. 9 (10), 8783 (2017)

Future post-doc and PhD opportunities?

Poster template acknowlegement: Felix Breuer

Dirac semimetals

Dirac semi-metals are characterised by a linear energy dispersion with zero gap in the electronic structure. They are closely connected with the related topological insulator family, offering opportunities for zero-loss electronic transport.

Electron Momentum